
IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 24, NO. 1, JANUARY-JUNE 2025 1

SDT: Cutting Datacenter Tax Through Simultaneous
Data-Delivery Threads

Amin Mamandipoor ID , Huy Dinh Tran ID , and Mohammad Alian ID

Abstract— Networking is considered a datacenter tax, and
hyperscalers push hard to provide high-performance networking
with minimal resource expenditure. To keep up with the ever-
increasing network rates, many CPU cycles are spent on the
networking tax. We make a key observation that network pro-
cessing threads can be simultaneously executed on server CPUs
with minimal interference with the application threads. However,
utilizing simultaneous multithreading (SMT) to scale the number
of network threads with the number of application threads
suffers from (1) failing to provide strict tail latency requirements
for latency-critical applications, and (2) reducing the number
of available hardware threads for application processes, thus
contributing to a high datacenter network tax. In this work, we
design, implement, and evaluate a chip-multiprocessor (CMP)
with specialized Simultaneous Data-delivery Threads (SDT) per
physical core. The key insight is that with judicious partitioning
at the architectural level, SDT can safely co-run with application
processes with guaranteed performance isolation. Our evaluation
results, using full-system simulation, show that a 20-core CMP
enhanced with SDT reduces the area and power consumption of
a baseline 40-core CMP by 47.5% and 66%, respectively, while
reducing network throughput by less than 10%.

Index Terms—Network, microarchitecture, datacenters

I. INTRODUCTION

END-HOST networking bandwidth is increasing expo-
nentially in datacenters. Despite progress in reducing

the network software stack overhead and the deployment
of userspace networking, delivering data from the NIC to
application threads still requires a significant number of CPU
cycles. The bandwidth of network data delivery only scales if
more CPU cycles are allocated to the userspace networking
software. As shown in Figure 1, the data delivery bandwidth
of DPDK [1], the state-of-the-art userspace networking frame-
work, scales linearly when more hardware threads are assigned
to the polling mode driver and the simple layer-2 network
function.

Another challenge for high-throughput networking is the
amplification of on-chip and off-chip data movement during
data delivery from the NIC to the application threads. Direct
cache access technologies [2] are developed to minimize
off-chip data movement for data delivery from I/O devices.
However, while I/O data placement in shared caches can be ef-
fective in reducing off-chip data movement, it does not address
on-chip data movement. Previous works aimed at reducing

Manuscript received 14 October, 2024; revised 28 February, 2025; accepted
5 March 2025.

Amin Mamandipoor and Huy Dinh Tran are with University of Kansas,
Lawrence, KS 66045 USA (e-mail: aminm@ku.edu, huydinhtran@ku.edu).

Mohammad Alian is with Cornell University, Ithaca, NY 14850 USA (e-
mail: malian@cornell.edu).

Number of
cores

MPPS

1 13322012
2 25033918
4 48768423
6 72440347
8 94697831

M
PP

S

0

25000000

50000000

75000000

100000000

Number of Cores
0 2 4 6 8

64B
pktsize
x-x-x TX-pps TX-Mpps Tx-bps Tx-Gbps

1 13322012 13.322012 6820857280 6.82085728
2 25033918 25.033918 12817366192 12.81736619
4 48768423 48.768423 24969449688 24.96944969
8 94697831 94.697831 48485276816 48.48527682

12 105839686 105.839686 54189869136 54.18986914
16 105981229 105.981229 54262389264 54.26238926

Number of
cores

Bandwidth

1 6.82085728
2 12.81736619
4 24.96944969
6 37.08949
8 48.48527682

Ba
nd

w
id

th
 (G

bp
s)

0

10

20

30

40

50

Number of Cores

0 2 4 6 8

Fig. 1. Scaling data net-
work delivery bandwidth
requires CPU cycles.

both on-chip and off-chip data
movement for data delivery from
the NIC to CPU, but they only
considered run-to-completion net-
work functions [3]. These works
fall short in addressing the com-
plexity of the network data deliv-
ery path, which starts at the NIC,
passes through the physical core
running the network thread, and
finally reaches the physical core executing the application
logic.

This work sets out to provide free CPU cycles for delivering
network data from the NIC all the way to the core pipelines
with minimal on-chip data movement. To achieve this, we
introduce the concept of Simultaneous Data-delivery Threads
(SDT), where each core pipeline in a Chip Multi-Processor
(CMP) adds a minimalist hardware thread that is exposed
to the OS where it can be used for running data-delivery
threads, either in kernel space or userspace networking stacks.
The key insight is that the data-delivery threads — that are
responsible for polling NIC, running interrupt handlers, encap-
sulating/decapsulating headers to/from the payload, enqueuing
pointers, etc. — sporadically utilize a fraction of the hard-
ware resources in a beefy out-of-order superscalar pipeline.
SDT leverages this insight to add a minimalist simultaneous
hardware thread to each core and judiciously partition the
physical resources between the data delivery thread and other
hardware threads, minimizing interference while delivering
high performance for both the data delivery thread and co-
running application threads.

II. BACKGROUND AND MOTIVATION

Data Delivery vs. Data Processing. We distinguish network
data delivery functionality from data processing functionality.
In essence, data delivery includes receiving packets from the
datacenter network, transferring them to shared NIC-CPU
buffers (through a DMA engine), notifying the CPU of the new
packet delivery, and finally executing a data delivery function
on the CPU that fetches received packet headers, decapsulate
them, and copy the data or pass a reference of the received
payloads to a data processing function.

Based on this classification, we can segregate any distributed
application into two phases: data delivery and data processing.
Depending on the physical core and the timing of execution
of the data processing function after the completion of the

0000-0000 © 2025 IEEE

https://orcid.org/0009-0000-6686-3851
https://orcid.org/0009-0003-7524-929X
https://orcid.org/0000-0002-4622-2181

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 24, NO. 1, JANUARY-JUNE 2025 2

AppPolling
RX

NIC

LLC

L1

AppPolling
RX

NIC

Core 1 Core 1 Core 2

1

2

3

4

5 1

2

3

4

5

Sa
m

e
Su

b-
N

U
M

A
D

iff
er

en
t

Su
b-

N
U

M
A

D
iff

er
en

t
N

U
M

A

Configurations

N
orm

alized Throughput

0.75

0.5

0.25

0

1

(a) Run-to-completion

AppPolling
RX

NIC

LLC

L1

AppPolling
RX

NIC

Core 1 Core 1 Core 2

1

2

3

4

5 1

2

3

4

5

Sa
m

e
Su

b-
N

U
M

A
D

iff
er

en
t

Su
b-

N
U

M
A

D
iff

er
en

t
N

U
M

A

Configurations

N
orm

alized Throughput

0.75

0.5

0.25

0

1

(b) Pipeline

Sa
m

e
Su

b-
N

UM
A

Di
ffe

re
nt

Su
b-

N
UM

A

Di
ffe

re
nt

N
UM

A SM
T

0

0.25

0.5

0.75

1

N
or

m
al

ize
d

Th
ro

ug
hp

ut

Configurations

(c) Performance

Fig. 2. Overview of (a) run-to-completion and (b) pipeline applica-
tions datapath, (c) iperf’s performance for different NUMA settings.

data delivery, we can classify network applications into run-to-
completion and pipeline categories. For simplicity, we consider
a userspace networking stack, but the same classification can
be applied to kernel space networking.

A run-to-completion application implements a blocking
loop on the data delivery function and immediately calls the
data processing function with pointers to the newly received
payloads as input arguments. In a pipeline application, data
delivery and data processing functions run on separate threads
and communicate synchronously or asynchronously. The data
delivery and data processing threads can timeshare a single
core or run in parallel on two different cores. Although
executing the functions on separate cores can enable data
delivery and data processing to be performed in parallel, such
a pipeline leads to frequent inter-core data movement.

Figure 2a and 2b illustrate the data delivery path of run-
to-completion and pipeline applications, respectively. After
packets are received from the NIC (1), the core running the
data delivery thread fetches the packet into its L1 cache for
processing (2). Once the packet is processed by the data
delivery thread, the payload needs to be passed to the data
processing thread (3). In a run-to-completion implementation,
this happens through a simple function call. However, in a
pipeline implementation, the payload is passed through an
inter-process communication scheme to the data processing
thread. The data processing thread then completes the execu-
tion of the application (4) and sends a response back (5).
A Case for Simultaneous Data Delivery Threads. One
of the key benefits of run-to-completion is eliminating the
overhead of inter-core communication between data delivery
and data processing functions. However, run-to-completion is
very restrictive and not scalable, and except for very simple
network functions, a pipeline programming style is used.

To understand the importance of minimizing data move-
ment between the data delivery and data processing threads,
we set up an experiment where we pin the data delivery
and data processing threads to different cores with varying
distances. We compare the performance of pinning the data
delivery and data processing threads to the same physical
core but different hardware threads, same Sub-NUMA Clus-
ters (SNCs)1, different SNCs, and different NUMA nodes.
As shown in Figure 2c, moving the data delivery and data
processing threads to different SNCs or NUMA nodes results
in a performance loss of 13% and 37.8% in the end-to-end
iperf performance, respectively. Sharing the core between data

1Sub-NUMA Clustering (SNC) is a feature on some Intel processors that
splits the processor’s memory, cache, and cores into multiple NUMA domains.

delivery and processing threads, while beneficial in minimiz-
ing data movement overhead between the threads, results in
a 24% lower throughput compared to using two physically
adjacent cores. This reduction is due to the static partitioning
of core pipeline resources and the contention they introduce.

In this work, we aim to provide an architecture that offers
the performance benefit of run-to-completion but the flexibility
of pipeline implementation. We introduce Simultaneous Data
Delivery Threads (SDT), where we co-locate data delivery
and data processing threads on the same physical core and
judiciously partition the physical resources between them
to deliver the performance of a run-to-completion running
application with significantly fewer physical resources.

The insight behind designing SDT is that data delivery
threads can be executed simultaneously with data processing
threads with minimal interference. In the next section, we
conduct a design space exploration to identify the minimal
resources required for the data delivery thread to keep pace
with the processing rate of a data processing thread, which
consumes network data as soon as it is received.

III. DEMYSTIFYING NETWORK DATA DELIVERY

In this section, we profile the network data delivery path at
the microarchitectural level and present several key takeaways
that inform the SDT architecture.
Experimental Methodology. We use DPDK l2fwd as a
representative data delivery function, as it has a minimal
data processing function that performs a simple MAC address
swap. We consider more complex protocol processing code
to be part of the data processing phase. We run l2fwd
on gem5 [4], utilizing a hardware load generator to stress
l2fwd [5]. The key parameters of the simulated node are
detailed in Table I. We take this baseline architecture, which
loosely models a beefy Intel Xeon Alder Lake CMP, and
sweep the size of the key microarchitectural components, and
report data delivery throughput and tail latency.

Our experimental methodology consists of a two-phase
simulation approach. Initially, we warm up the caches for 2
ms. We then switch to a detailed out-of-order CPU mode for
an additional 4 ms of simulation time. During this phase, we
activate a hardware-based load generator that injects 8 million
64-byte packets at the maximum rate a single core can sustain.

Parameters Default (Beefy) Data-Delivery Requirement (Minimalist)
CPU Type Out-of-Order Out-of-Order
Superscalar 12 ways 3 ways
IQ/LQ/SQ 194/144/112 32/32/32

Int/FP/Vec register 448/256/400 92/0/46
ITLB/DTLB/BTB/ROB 64/64/8192/512 3/10/256/128

Private L1-iCache 32KB (8-way) 4KB
Private L1-dCache 64KB (16-way) 16KB
Private L2-Cache 1MB (16-way) 512KB
Shared L3-Cache 2MB (16-way) 256KB

DRAM DDR4 2400MHz/4GB DDR4 2400MHz/4GB

Table I. gem5 configuration and data-delivery requirements.

Data-Delivery Sensitivity to Microarchitectural Parame-
ters. As shown in Figure 3, the performance of the data
delivery thread is fairly insensitive to floating point (FloatReg,
and floatUnit) and instruction supply components (iTLB, and
iCache). The reason is the lack of floating point operations
and the small instruction footprint of the data delivery thread.
Although the data delivery performance is sensitive to the

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 24, NO. 1, JANUARY-JUNE 2025 3

ITB recvPacket 99th Latency 99 scale gpt
1 1859902 13.303 16
2 2783962 8.656 11
3 7343900 0.725 2
4 7344000 0.723 2
5 7344140 0.715 2
6 7344240 0.714 2
7 7344940 0.713 2
8 7494240 0.626 1.892085

16 7494240 0.623 1.8830175
32 7494240 0.622 1.879995
64 7494240 0.622 1.879995

DTB recvPacket 99th Latency 99 scale gpt
1 1057367 23.005 28
2 1869902 12.434 16.1
3 2539880 9.032 11.7
4 3853246 4.556 7.2
5 4455186 3.418 5.7
6 6096260 1.407 3.2
7 6156260 1.337 3.1
8 6212675 1.295 3.06
9 6412675 1.202 2.85

10 6629326 1.03 2.66
11 7011421 0.969 2.35
12 7111421 0.947 2.27
13 7166421 0.945 2.22
14 7211421 0.939 2.18
15 7311421 0.912 2.1
16 7321421 0.863 2.1
32 7466488 0.626 1.88
64 7466488 0.622 1.88

ROB recvPacket 99th Latency BTB recvPacket 99th Latency recvP real Int Reg recvPacket 99th Latency Float Reg recvPacket 99th Latency VecReg Throughput 99th Latency 99th scale FloatUnit throughput 99th Latency
1 689984 39.337 1 5055088 4.957 47,264 1 0 40 1 7495200 1.882 1 0 40 1 7483552 1.88
2 1306272 21.127 2 5121500 4.833 47,648 2 0 40 2 7495200 1.883 2 0 40 2 7483552 1.88
4 2233248 12.793 4 5186935 4.709 48,096 4 0 40 4 7495200 1.88 4 0 40 3 7483552 1.88
8 3496896 8.12 8 5363360 3.965 55,895 8 0 40 8 7495200 1.88 8 0 40 4 7483552 1.88

16 4735680 5.03 16 5363520 3.957 58,848 16 0 40 16 7495200 1.88 16 0 40 5 7483552 1.88
32 6005952 3.269 32 5646080 3.462 61,494 32 0 40 32 7495200 1.88 32 0 40 6 7483552 1.88
64 6446637 2.812 64 5746880 3.589 61,480 43 0 40 64 7495200 1.88 43 0 40

128 7395328 2.033 128 5748880 3.586 62,208 51 44704 5.646 128 7495200 1.88 51 4042437 6.8 intALU throughput 99th Latency
256 7486336 1.894 256 7494048 1.88 82,885 59 58627 3.803 256 7495200 1.88 59 5301449 4.3 1 6113035 3.343
512 7485923 1.882 512 7485760 1.88 82,945 67 65408 3.425 67 5914633 3.4 2 7195840 2.001

1024 7494048 1.88 82,945 75 69880 3.187 ICache recvPacket 99th Latency 75 6319021 2.85 3 7455296 1.88
2048 7494048 1.88 82,945 84 73632 3.063 1 6445785 2.747 84 6658302 2.64 4 7485456 1.88
4096 7494422 1.88 82,945 100 76992 2.811 2 6438528 2.744 92 6817453 2.51 5 7483552 1.88
8192 7485923 1.88 82,945 128 79136 2.032 4 7476352 1.908 100 6962136 2.39 6 7483552 1.88

140 82784 1.947 8 7483755 1.881 124 7156011 2.23
164 83025 1.9 16 7483424 1.882 180 7485888 1.88 Issue Width Thgh 99th Latency

IQ recvPacket 99th Latency LQ recvPacket 99th Latency 256 82944 1.88 32 7485923 1.88 244 7485888 1.88 1 4409772 6.414
1 1168384 23.537 1 1902560 14.82 316 82944 1.88 324 7485888 1.88 2 6451136 2.981
2 2039360 13.829 2 3154464 9.22 448 82944 1.88 DCache recvPacket 99th Latency 448 7485888 1.88 3 7122848 2.175
4 3386560 8.352 4 4408426 5.645 1 4892832 3.948 4 7299232 2.002
8 5190688 4.376 8 5645984 3.797 2 6424832 2.74 L3Cache recvPacket 99th Latency 5 7465504 1.881

16 6568729 2.756 16 6306620 3.055 4 6568224 2.612 1 5546528 3.528 6 7478496 1.879
32 7315584 2.061 32 7484992 2.013 8 6865504 2.365 2 5541865 3.526 7 7492480 1.883
64 7485825 1.88 64 7484992 1.885 16 7433536 1.993 4 5742016 3.515 8 7486720 1.884

128 7485923 1.879 128 7484992 1.881 32 7485923 1.88 8 5860192 3.381 9 7486656 1.88
64 7485923 1.88 16 5883008 3.393 10 7486752 1.881

32 6572000 2.561 11 7486752 1.882
SQ recvPacket 99th Latency L2Cache recvPacket 99th Latency 64 6572064 2.561 12 7486464 1,879

1 2399520 11.837 1 5001024 4.628 128 6572320 2.532
2 3421609 8.375 2 4967104 4.7 256 7485792 1.882 Fetch Width Thgh 99th Latency
4 4593249 5.53 4 4889376 4.818 512 7485923 1.882 1 3825181 8.139
8 5547584 3.88 8 4809952 4.963 1024 7485923 1.886 2 5558934 4.207

16 6995744 2.362 16 5097152 4.506 2048 7485923 1.884 3 6214464 3.347
32 7484790 1.933 32 5023296 4.596 4 6808364 2.735
64 7485504 1.898 64 5104208 4.49 5 6898619 2.615

128 7485923 1.88 128 5181312 4.363 6 7196117 2.351
256 5252079 4.233 7 7272923 2.248
512 7481564 1.892 8 7388416 2.003

1024 7481564 1.885 9 7403168 2.002
10 7481728 1.929
11 7471241 1.882
12 7486464 1.882

1 2 4 8 16 32 64

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

of iTLB Entries

iTLB

1 2 4 8 16 32 64

of dTLB Entries

dTLB

1 2 4 8 16 32 64 128 256 512

of ROB Entries

ROB

1 4 16 64 256 1024 4096

of BTB Entries

BTB

1 2 4 8 16 32 64 128 256 512

of Integer Registers

intReg

1 2 4 8 16 32 64 128 256

of Float Registers

floatReg

1 2 4 8 16 32 64 128 256

of Vector Registers

vecReg

1 2 4 8

of Float Unit

floatUnit

0

5

10

15

20

25

30

35

40

1 2 4 8

99th Latency (m
s)

of Integer Unit

intUnit

1 2 4 8 16 32 64 128

of LQ Entries

LQ

1 2 4 8 16 32 64 128

of SQ Entries

SQ

1 2 4 8 16 32

Size of iCache (kB)

iCache

1 2 4 8 16 32 64

Size of dCache (kB)

dCache

1 4 16 64 256 1024

Size of L2 Cache (kB)

l2Cache

1 4 16 64 256 1024

Size of L3 Cache (kB)

l3Cache

1 2 4 8 16

Issue Width

Issue

0

5

10

15

20

25

30

35

40

1 2 4 8 16

99th Latency (m
s)

Fetch Width

Fetch

1 2 4 8 16 32 64 128

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

of IQ Entries

IQ

Fig. 3. Sensitivity of data delivery thread to size of microarchitectural structures. The horizontal line is the 90% performance watermark.

size of other microarchitectural structures, it drastically under-
utilizes those structures. More specifically, we can reduce the
size of key microarchitectural structures by 71% to 97% with
less than 10% reduction in the performance of the data delivery
thread. The last column of Table I reports a minimal core
configuration for a data delivery thread to deliver 90% of the
throughput of the default beefy core.

IV. SDT ARCHITECTURE
In Section III, we discussed the significant opportunity to

reduce the resources allocated for data delivery on a CMP. A
naive approach to leverage this insight would be to design
a heterogeneous CMP with dedicated data delivery cores
and data processing cores, similar to big.LITTLE architec-
tures [6]. However, such a heterogeneous architecture incurs
data-movement overhead between the private caches of the
data-delivery and data-processing cores (§II). Additionally,
when network activity is low, the data-delivery cores remain
underutilized. In this work, we present SDT, which enhances
regular cores on CMPs with a simultaneous multi-threading
capability that dynamically partitions core resources between
the data delivery and data processing threads based on network
load [7]. SDT minimizes data movement by co-locating data
delivery and data processing threads on the same physical core
and private cache hierarchy.

While traditional SMT implementations often partition on-
chip components symmetrically between threads [8], this
approach is suboptimal for data delivery tasks, which typically
require fewer resources compared to data processing threads.
When running alongside a low compute-intensity application,
SDT allocates more resources to fulfill network requirements.
Conversely, when paired with a high compute-intensity appli-
cation, resources are prioritized for the data processing thread.

To accommodate varying workload scenarios, we propose a
lightweight mechanism that dynamically adapts resource allo-
cation between data delivery and data processing threads based
on real-time demands. We partition resources asymmetrically
based on each thread’s actual requirements. The key insight
driving our approach is the ability to significantly reduce
the size of key microarchitectural structures for SDT while
maintaining near-optimal performance in data delivery to the
core.

We introduce several asymmetrically partitioned configu-
rations to leverage the distinct behaviors of data delivery
and data processing threads. These configurations are enabled
through a software daemon controller which dynamically

adjusts resource allocation at runtime. Below, we detail each
component of our proposed mechanism:
Microarchitecture. Our mechanism requires minimal modi-
fications to a baseline SMT core that typically partitions its
pipeline components equally among co-running threads .We
extend this model by providing three additional configurations
with asymmetrically sized partitions. In total, each component
supports four configurations, allowing for more flexible re-
source allocation.

Resource allocation varies based on computational intensity.
In the Baseline scenario, resources are equally partitioned
between threads. For High Computational Intensity, SDT
receives 10% of resources, with the remainder allocated to
data processing. In Medium Intensity scenarios, SDT’s share
increases to 20%. For Low Intensity, SDT utilizes 40% of
resources, with the rest dedicated to data processing.

Our asymmetric configurations are added at processor de-
sign time, building upon existing SMT partitioning mecha-
nisms. For each thread, we utilize two registers per partitioned
structure [9]: a limit register and a usage register. The limit
register defines the maximum number of entries a thread can
occupy, while the usage register tracks the current allocation.
Control logic checks each cycle to ensure the usage doesn’t
exceed the limit, blocking further allocation when they are
equal. To enable our asymmetric partitioning scheme, we make
the limit registers programmable which allows us to dynami-
cally adjust the maximal occupancy for key structures based on
the selected configuration. Our approach requires one register
pair per structure, resulting in negligible hardware overhead.
Importantly, this implementation does not necessitate complex
control logic beyond what is already present in baseline cores
supporting equal partitioning.
Software Daemon. To complement our hardware-level re-
source management, we developed the SDT daemon, a soft-
ware component that controls the resource partitioning be-
tween data delivery thread and main thread by periodically
sampling the system performance and adjusting the resource
partitioning ratios. The daemon periodically monitors system
performance and issues resource partitioning commands. To
enable efficient communication between the SDT daemon and
hardware structures, we extended the ISA with a custom
Store Resource Partition (STRP) instruction. This instruction
conveys partitioning policies to specific microarchitectural
components. The SDT daemon allows for flexible implemen-
tation of different heuristics based on hardware and software

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 24, NO. 1, JANUARY-JUNE 2025 4

telemetry to control the partitioning between SDT and data
processing threads. In our work, we demonstrate that a simple
heuristic based on network load is sufficient to deliver near-
optimal performance.
Re-partitioning Overhead. The re-partitioning frequency of
SDT daemon is set at 1 ms. To prevent data conflicts and
ensure data integrity — given that existing entries may become
invalid due to changes in resource ownership among threads
— it is essential to adopt an effective pipeline management
strategy. We consider two primary approaches: pipeline flush
and pipeline drain.

The pipeline flush method invalidates all in-flight instruc-
tions and immediately resumes execution with the new par-
titioning scheme. This approach facilitates a rapid transition,
potentially refilling the ROB and pipeline entries within a few
hundreds of cycles, while minimizing overall re-partitioning
penalties by bypassing pending instruction completions. In
contrast, the pipeline drain method halts the fetching of new
instructions, allowing in-flight instructions to complete before
applying the new partitioning. While this method maintains in-
struction continuity, it incurs higher overhead, especially when
pending instructions create data flow dependencies on load
instructions that miss in on-chip caches. In our simulations,
the pipeline flush and drain options incur approximately 200
cycles and 1400 cycles of overhead, respectively. SDT uses
the pipeline flush option due to its lower overhead for re-
partitioning. In the worst-case scenario, where the software
daemon re-partitions every 1 ms, the performance overhead
introduced by pipeline flushes is less than 0.001%.

V. EVALUATION
Methodology. We use gem5’s full system mode to evaluate
SDT design outlined in Section IV. The SDT software daemon
partitions the following key components based on network
load: IQ, LQ, SQ, BTB, ROB, intReg, floatReg, and vecReg.
We implemented a DPDK-based micro-benchmark that models
a generic two-phase network application in pipeline mode:
a data delivery thread that operates similarly to the l2fwd
application, and a data processing thread that can be config-
ured with different computational intensities (i.e., the number
of CPU cycles per network byte received). We experiment
with three levels of computational intensities: low, medium,
and high, which correspond to 9Gbps, 4Gbps, and 500Mbps
of network load per core. The baseline simulated node is
configured with the parameters shown in Table I.
Results. Figure 4 shows the partitioning between the data
delivery thread (running on SDT) and the data processing
thread (running alongside SDT on the same physical core) to
maintain at least 90% of the performance of a beefy core with
2× more resources, evenly partitioned between the threads.
As illustrated, as the compute intensity of the data processing
thread increases, the data delivery rate decreases, and the
core pipeline resources naturally shift from SDT to the data
processing thread.

Across different compute intensity configurations, SDT is
assigned only between 3.6%–35.3% of the total pipeline
resources across various microarchitectural components. Using
McPAT [10], we compared SDT with the baseline, where

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

1

2

4

8

16

32

64

128

256

BTB ROB IntReg LQ SQ IQ

%
 of Total Com

ponent Size

Co
m

po
ne

nt
 S

ize

Low (Size) Medium (Size) High (Size)
Low (%) Medium (%) High (%)

Fig. 4. SDT requirements for different levels of compute-intensity
applications.

each thread hugs a full beefy core, SDT achieves 47.5% area
savings and 66% power savings for a chip multiprocessor with
20 cores, as configured in Table I.

VI. CONCLUSION
This work introduces a novel CMP architecture where each

core is enhanced with Simultaneous Data-delivery Threads
(SDT) to reduce the CPU cycles spent on delivering data
from the network to the processing cores. SDT introduces
specialized hardware threads that utilize a small fraction of
the core pipeline resources without interfering with the main
hardware threads executing on the core. By dynamically
partitioning physical resources between data delivery and
processing threads, SDT maintains 90% of the baseline CMP
performance, where an entire physical core is dedicated to data
delivery threads. SDT achieves 47.5% area savings and 66%
power savings for a 20-core CMP. These results demonstrate
the potential of specialized simultaneous hardware threads in
the design of next-generation cloud-native CMPs.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant numbers
2239020 and 2311891 and by ACE, one of the seven centers
in JUMP 2.0, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA. Any opinions, findings, con-
clusions, and recommendations expressed in this material are
those of the authors and do not necessarily reflect those of the
sponsors. Amin Mamandipoor and Huy Dinh Tran contributed
equally to this work.

REFERENCES

[1] “Intel® | Data Plane Development Kit.” [Online]. Available: https:
//www.dpdk.org/

[2] “Intel® | Data Direct I/O Technology.” [Online]. Available: https:
//www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html

[3] Mohammad Alian et al., “IDIO: Network-Driven, Inbound Network
Data Orchestration on Server Processors,” in Proc. IEEE/ACM Int. Symp.
Microarchit., 2022, pp. 480–493.

[4] Jason Lowe-Power et al., “The gem5 Simulator: Version 20.0+,” 2020,
arXiv:2007.03152 [cs].

[5] Johnson Umeike et al., “Userspace Networking in gem5,” in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw., 2024, pp. 179–191.

[6] Rakesh Kumar et al., “Single-ISA heterogeneous multi-core architec-
tures: the potential for processor power reduction,” in Proc. IEEE/ACM
Int. Symp. Microarchit., 2003, pp. 81–92.

[7] F.J. Cazorla et al., “Dynamically controlled resource allocation in
smt processors,” in 37th International Symposium on Microarchitecture
(MICRO-37’04), 2004, pp. 171–182.

[8] Mohammadkazem Taram et al., “SecSMT: Securing SMT processors
against Contention-Based covert channels,” in Proc. USENIX Security
Symp., 2022, pp. 3165–3182.

[9] Artemiy Margaritov et al., “Stretch: Balancing QoS and throughput for
colocated server workloads on SMT cores,” in Proc. IEEE Int. Symp.
High Perform. Comput. Archit., 2019, pp. 15–27.

[10] Sheng Li et al., “McPAT 1.0: An Integrated Power, Area, and Timing
Modeling Framework for Multicore Architectures.”

https://www.dpdk.org/
https://www.dpdk.org/
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html

	Introduction
	Background and Motivation
	Demystifying Network Data Delivery
	SDT Architecture
	Evaluation
	Conclusion
	References

