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Executive Summary

* Processing In Memory (PIM), Near Memory Processing (NMP), ...

v’ EXECUBE’94, IRAM’97, ActivePages’98, FlexRAM’99, DIVA'99, SmartMemories’00, ...

* Question: why haven’t they been commercialized yet?
v'Demand changes in application code and/or memory subsystem of host processor
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Executive Summary

* Solution: memory module based NMP + Memory Channel Network (MCN)

v'Recognize NMP memory modules as distributed computing nodes over Ethernet >
no change in application code or memory subsystem of host processors

v'Seamlessly integrate NMP w/ distributed computing frameworks for better scalability
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* Solution: memory module based NMP + Memory Channel Network (MCN)

v'Recognize NMP memory modules as distributed computing nodes over Ethernet >
no change in application code or memory subsystem of host processors

v'Seamlessly integrate NMP w/ distributed computing frameworks for better scalability

* Feasibility & Performance:
v'Demonstrate the feasibility w/ an IBM POWERS + experimental memory module

v Improve the performance and processing bandwidth by 43% and 4x, respectively



Overview of MCN-based NMP

host MCN DIMM
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Overview of MCN-based NMP
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*Application Processor

 Buffered DIMM w/ a low-power but powerful AP” in a buffer device
v'An MCN processor runs its own lightweight OS including the minimum network stack
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Overview of MCN-based NMP

MCN distributed computing MCN node
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Higher Processing BW* w/ Commodity DRAM
*bandwidth
* Conventional memory system t

v'"More DIMMSs = larger capacity but the same bandwidth

DDR4 DIMM DDR4 DIMM

Data Buffer Data Buffer

Memory Controller

Global/Shared Channel
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Higher Processing BW* w/ Commodity DRAM
*bandwidth
* Conventional memory system w/ near memory processing DIMMs

v’an MCN processor w/ local DRAM devices through private channels = scaling
aggregate processing memory bandwidth w/ # of MCN DIMMs
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MCN DIMM Architecture

IBM Centaur DIMM Buffer Device

1
Scheduler & Memory POWERS

Management | gache  Link

DRAM Chips: b A

+ 16GB = 40 DRAM Chips 4

. 32GB = 80 DRAM Chips \

+ 64GB = 80 DRAM Chips \

80 DDR DRAM chips
+ buffer chip
w/ a tall form factor

> > Architecture > >
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MCN DIMM Architecture

IBM Centaur DIMM Buffer Device Near-Memory Processor
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MCN DIMM Architecture: Interface Logic
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MCN DIMM Architecture: Interface Logic

MCN bl;ffer layout core | | core | | core | | core
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MCN Driver

application I user space

TXlTRX
A

linux network stack
i . "MCNdriver 1 | kernel space

NIC e ——— :
Driver!i| forwarding engine || polling agent |
_______ e L,

memcpyl f N

$ memory channel 1

I MCN access I regular access hardware
. MCNSRAM | DDRmemory
Y
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MCN PaCket Routing 1. A packet is passed from the host

network stack and the packet goes to

* Host 2 MCN the corresponding MCN DIMM or NIC
application 1 user space host
X l T RX "
linux network IP: X.X.X.X o
/11 O
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—
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Y

> > Driver > > > > >




17

MCN Packet Routing 2. If the packet needs to be sent to an
MCN DIMM, the forwarding engine

e Host > MCN checks the MAC of the packet stored in
main memory
application 1 user space host

X lT RX
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MCN Packet Routing

3. If the MAC matches w/ that of an MCN

DIMM, the packet is copied to the

* Host 2> MCN SRAM buffer of the MCN DIMM
application 1 user space host
TX l T RX
A E
linux network stack o =
—— § -[HeaderIData/Z
I ¥ i 1 o
e i: MCN driver : kernel space 8
iDriver:l forwarding engine || polling agent i 2
"""""" memepy [Ty =~ >
h o =
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I MCN access i regulaf access hardware = oD:
.~ Header | Data l -
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MCN PaCket Routing 4. This data copy triggers IRQ from the
MCN DIMM and MCN processor knows

* Host 2 MCN there is an arrived packet
application 1 user space host
X l T RX
A
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linux network stack o =
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MCN Packet Routing 1. MCN DIMM writes a packet to its SRAM

buffer and set the corresponding TX-

* MCN = Host poll bit
application 1 user space host
X l T RX
A
=
linux network stack o =
O et O | Header | Data
i _ UMCNdriver 1 | kernel space = =
\Driver!i| forwarding engine || polling agent | D
I I
______________________________________ U
memcpyl f ¥ =
— =
memory channel 1 S a
S <
i MCN access I regular access hardware oDc
| Header | Data | DDR memory a
Y
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MCN PaCket Routing 2. Polling agent from the host recognize
the TX-poll bit is set and read the

* MCN - Host packet from the SRAM buffer
application 1 user space host
X l T RX A

linux network stack o
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MCN PaCket Routing 3. Forwarding engine checks the MAC

address and determine the destination

* MCN - Host
application 1 user space host
X l T RX
A
=
linux network stack o =
O et O
—————— i, <
i- NIC E:MCN driver i kernel space = oDc
T :: . l [ )
Driverpj forwarding engineJl polling agent | Header | Data
Y = =
\ — =
MAC: HH.HH.HH.HH.HH.HH & . — g
dCCESS y |cauldl dttEss hardware E ODC
| Header | Data | DDR memory a
Y

> > Driver > > > > >




23

' 4. It this is for the host, it copies the
MCN Packet Routing f this is for the h h
packet to the host skb which in the host

e MCN > Host main memory *network socket buffer
application 1 user space host
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linux network stack o
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] I ii MCN driver kernel space =
Driverii Header | Data

|

|

|

|

|

I

I

|

|

|
3|
M |
31
ol
T I
< |
|
_’l
|

|

I

I

I

|

|

|

|

|

|

|

|

|

|

|

|

|
(

N
>

memory channel

MC-1

o
S
Q
o
=
IS
®
=
0
9,
®
o
o
=
G
Q)
0q
®
=
DDR4 % yD”VlM

i MCN access I regular access hardware

Header | Data = emory

> > Driver > > > >




24

' 4. It this is for the host, it copies the
MCN Packet Routing f this is for the h h
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MCN PaCket Routing 5. Finally the packet is passed to the host
network stack (e.g., TCP/IP)

* MCN = Host
application 1 user space host
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Optimizations

* Adopt optimizations from conventional Ethernet interfaces
v'Offload (or remove) packet fragmentation (e.g. TCP Segmentation Offload (TSO))

w/o TSO

TCP Data

( Pkt J( Pkt )
[ Pkt ][ Pkt )

Ethernet
(NIC)

%l Data || Data

Pkt
Wire X

=~
[

FIEE ™

4

> > > Optimizations > > >




Optimizations

* Adopt optimizations from conventional Ethernet interfaces
v'Offload (or remove) packet fragmentation (e.g. TCP Segmentation Offload (TSO))

w/o TSO
TCP Data [ Data ]
\ 4
[ Data || Data [ Dat ]
(oa)(he) L~ e
Ethernet [Pkt )[ Pkt ) ( Pkt ][ Pkt )
(NIC) [Pkt ][ Pkt ]} Pkt J__Pkt }
\ 4
Wi ) Pkt ) (_Pkt )
e (_Pkt ) (_Pkt )
Pkt

4

> > > Optimizations > > >




Optimizations

* Adopt optimizations from conventional Ethernet interfaces
v'Offload (or remove) packet fragmentation (e.g. TCP Segmentation Offload (TSO))

W/o TSO MCN TSO
TCP Data [ Data ] Data ]
\/ \/
[ Data || Data_| [
mrenlmre B LR S O Data_ ]
Ethernet ( Pkt J( Pkt ) ( Pkt )( Pkt )
(NIC) (Pkt ][ Pkt ) Pkt J(CPkt Reducing the overhead of
* sending many small packets
[ Pkt ]
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e Pkt ) Pkt )
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Optimizations

* MCN-side DMA
v'Baseline MCN processor manually copies data b/w SRAM and DRAM

v'SRAM-to-DRAM DMA eliminates CPU memcpy overhead similar to NIC-to-DRAM
DMA in conventional systems

( cru ) ( cPu )

SRAM DRAM SRAM DRAM
MCN Baseline MCN w/ DMA
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Proof of Concept HW/SW Demonstration

ConTutto top view Contutto plugged in IBM POWERS server
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Proof of Concept HW/SW Demonstration

qul)l 'Eg power8@tuleta2-contutto:~ hiruh -;ﬁca btl _base warn_component i
case unused 0 -np 2 -host power8@nios,tuleta /home/power8/mpihello
00
ello world from processor tuleta2-contutto, rank 0 out of 2 pr

a ello world from processor nios2, rank 1 out of 2 processors POWERS
host power8@tuleta2-contutto:~$ mpirun --mca btl base warn_component

- unused 0 -np 2 -host power8@nios,tuleta /home/power8/mpisendte U{ost)
st 300
achine tuleta2-contutto generated random number: 1804289383
achine tuleta2-contutto sent 1804289383
processor nios2 got 1804289383
power8@tuleta2-contutto:~$ Jj

MC-0
DDR4 DIMM
DDR4 DIMM

CPU

HIVS@rran-aeivel. ~ DJ2Xo0

‘1ength 0
PO:07:21.005542 IP nios.ssh > y700.42860: Flags [.], ack 3239,

MC-1
DDR4 DIMM

in 1246, options [nop,nop,TS val 141004 ecr 216486], length ©

P0:07:21.288293 IP nios.ssh > y700.42860: Flags [FP.], seq 3173 >>
, ack 3239, win 1246, options [nop,nop,TS val 141288 ecr 216486

| Mength 6 (MCN DIMM)
p0:07:21.305009 IP y700.42860 > nios.ssh: Flags [.], ack 3174,
in 308, options [nop,nop,TS val 216607 ecr 141288], length ©

ConTutto

MPI application running through MICN

> > > > Proof of Concept > > >
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Evaluation Methodology

 Simulation = dist-gem5 (ISPASS’17)
* Network performance evaluation = iperf and ping
* Application performance evaluation = Coral, Bigdatabench and NPB

MCN System Configuration Host System Configuration

CPU ARMv8 Quad Core running @ 2.45GHz CPU ARMvV8 Octa Core running @ 3.4GHz
Caches  L1I:32KB, L1D: 32KB, L2: 1MB Caches  L1I: 32KB, L1D: 32KB, L2: 256KB, L3: 8MB
Memory DDR4-3200 Memory DDR4-3200
ON) Ubuntu 14.04 NIC 10GbE/1us link latency

OS Ubuntu 14.04

> > > > > Evaluation > >




Evaluation — Network Bandwidth (iPerf)

Normalized Bandwidth

mcn-mcn

mcn baseline _ 1.08x

host-mcn

mcn baseline 1.30x
10GbE

0 1 2 3 4
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Evaluation — Network Bandwidth (iPerf)

Normalized Bandwidth

mch dma

TSO

mcn-mcn

mch baseline

mcn dma

TSO

host-mcn

mch baseline

10GbE
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Evaluation — Network Bandwidth (iPerf)

Normalized Bandwidth

mch dma
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mcn-mcn
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10GbE
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Evaluation — Network Bandwidth (iPerf)

Normalized Bandwidth

mch dma

TSO

mcn-mcn

mch baseline

4.56x

mcn dma

TSO

host-mcn

mch baseline

10GbE
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Evaluation — Network Latency (Ping)

Host << MCN MCN < MCN

O010GbE Omcn baseline OTSO ®Emcn dma O010GbE 0Omcn baseline OTSO ®EBmcn dma

2.0 - 2.0 -
>
%1'5 - 1.5 -
©
|
21.0 1.0
N
E
g0.5 19 Lo _I 0.5 - _I —I

oo L LTI [T | i 0.0

16 128 512 4K 8K 16 128 512 4K 8K
Packet Size (Bytes) Packet Size (Bytes)
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Evaluation — Aggregate Processing Bandwidth
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Scale-up versus MCN: Application Performance

The same number of cores between scale-up server and a server w/ MCN-enabled near-memory processing modules.

mmscale-up B MCN

012 -

S
= 1.0 A

O
oo
1

o o
A O

ized Execution

Normal
o O
o N

1121312131231 |2]|3|1|2|3(1]|2|3(1|2|3|1]|2]|3(1]|2]|3
IS ep cg mg ft bt sp lu avg

#MCN DIMMs per Channel (Number of Cores X 8 for scale-up setup)
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Conclusion

* MCN is an innovative near-memory processing concept
v'No change in host hardware, OS and user applications
v'Seamless integration w/ traditional distributed computing and better scalability

v'Feasibility proven w/ a commercial hardware system Data
\Y/[&\

" ork

* MCN can provide: Data

v'4.6x higher network bandwidth Server

S| Mem Channel
v'5.3x lower network latency
v'3.9x higher processing bandwidth Data
v'45% higher performance MCN

Ak

Mem Channel

than a conventional system

> > > > > > Conclusion >
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Any Questions?

Overview Architecture Driver Proof of Concept Evaluation Conclusion



