Application-Transparent Near-Memory
Processing Architecture with Memory
Channel Network

Mohammad Alian!, Seung Won Min!, Hadi Asgharimoghaddam?,
Ashutosh Dhar!, Dong Kai Wang!, Thomas Roewer?, Adam McPadden?,
Oliver O'Halloran?, Deming Chen!, Jinjun Xiong?, Daehoon Kim!,
Wen-mei Hwu!, and Nam Sung Kim!3

'University of lllinois Urbana-Champaign
’IBM Research and Systems
SSamsung Electronics

X ILLINOIS

. i] center for)
Electrical & Computer Engineering Syotoms researoh
COLLEGE OF ENGINEERING =% | L ILLINOIS

Executive Summary

* Processing In Memory (PIM), Near Memory Processing (NMP), ...

v’ EXECUBE’94, IRAM’97, ActivePages’98, FlexRAM’99, DIVA'99, SmartMemories’00, ...

* Question: why haven’t they been commercialized yet?
v'Demand changes in application code and/or memory subsystem of host processor

48MB Memory

Redundant ;I.L’C'.Q.f pcpé
= — Memony crossbar /-

! y CPU+
Vector Unit 3M$ °

Memory crossbar

48MB Memory

IRAM’97

+) [

sNIEE

FEEF

A

3’= =h Qaud

"~~~ Processing Tile or

Qaud Network DRAM Block
SmartMemories’00

‘ Host Processor

Memory-Mapped
Accelerator Interface :
Noncacheable, Physically Addressed) '

1’ %
T
Vv

ISCA’15

In-Order Core

LP PF Buffer

MTP

Message Queue

43]|043U0) VYA

Z o

Executive Summary

* Solution: memory module based NMP + Memory Channel Network (MCN)

v'Recognize NMP memory modules as distributed computing nodes over Ethernet >
no change in application code or memory subsystem of host processors

v'Seamlessly integrate NMP w/ distributed computing frameworks for better scalability

Executive Summary

* Processing In Memory (PIM), Near Memory Processing (NMP), ...
v'EXECUBE’94, IRAM’97, ActivePages’98, FlexRAM’99, DIVA’99, SmartMemories’00, ...

* Question: why haven’t they been commercialized yet?
v'Demand changes in application code and/or memory subsystem of host processor

* Solution: memory module based NMP + Memory Channel Network (MCN)

v'Recognize NMP memory modules as distributed computing nodes over Ethernet >
no change in application code or memory subsystem of host processors

v'Seamlessly integrate NMP w/ distributed computing frameworks for better scalability

* Feasibility & Performance:
v'Demonstrate the feasibility w/ an IBM POWERS + experimental memory module

v Improve the performance and processing bandwidth by 43% and 4x, respectively

Overview of MCN-based NMP

host MCN DIMM

SRE -

o =12

L_I) — (@] — (@]

= 2| |2
(=) =)
=) =)
> >

— 2| |2

I ey O e O N

s SEE MCN PROC local
8 8 o channels

global channel

*Application Processor

 Buffered DIMM w/ a low-power but powerful AP” in a buffer device

) G S S S S S

Overview of MCN-based NMP

host MCN DIMM

> >

o =12

L_I) — (@] — (@]

= 2| |2
(=) =)
=) =)
> >

— 2| |2 TS S S

I | D | | D

s SEE MCN PROC|(os)} local
8 8 o channels

global channel

*Application Processor

 Buffered DIMM w/ a low-power but powerful AP” in a buffer device
v'An MCN processor runs its own lightweight OS including the minimum network stack

> Overview >

>

>

> > >

Overview of MCN-based NMP

MCN distributed computing MCN node

-~ host MCN DIMM
i\ = >
P] o = |2
N = > >
== =) (@)
TrrIT / ()] ()

""""" /
""""" > >
ETITETN 1 - =) e 0
S <[MCN PROC local
() o o channels

regular node of L9

=l MCN node global channel

*Application Processor

 Special driver faking memory channels as Ethernet connections

) G S S S S S

Higher Processing BW* w/ Commodity DRAM
*bandwidth
* Conventional memory system t

v'"More DIMMSs = larger capacity but the same bandwidth

DDR4 DIMM DDR4 DIMM

Data Buffer Data Buffer

Memory Controller

Global/Shared Channel

> Overview > > > > >

Higher Processing BW* w/ Commodity DRAM
*bandwidth
* Conventional memory system w/ near memory processing DIMMs

v’an MCN processor w/ local DRAM devices through private channels = scaling
aggregate processing memory bandwidth w/ # of MCN DIMMs

Local/Private Channels
1

. DDR4 DIMM DDR4 DIMM < DDR4 DIMM MCN DIMM I|
v 2 I
— s 2 E 1
S = 2 4 E = |
cC o c o (o' o I
8 () 8 () QO 'a) /'
2 =l | & ¢ § <

o

g Data Buffer Data Buffer g

= =

— 5

Global/Shared Channel Global/Shared Channel

) G S S S S S

MCN DIMM Architecture

IBM Centaur DIMM Buffer Device

1
Scheduler & Memory POWERS

Management | gache Link

DRAM Chips: b A

+ 16GB = 40 DRAM Chips 4

. 32GB = 80 DRAM Chips \

+ 64GB = 80 DRAM Chips \

80 DDR DRAM chips
+ buffer chip
w/ a tall form factor

> > Architecture > >

11

MCN DIMM Architecture

IBM Centaur DIMM Buffer Device Near-Memory Processor

i E,F-'- "”zf%m@;f'a;:g??l' core [| core [| core | | core
: f?‘*t:f"u = 0 1 2 3

)
o
« .
- = LLC / interconnect
Scheduler & s: W POWERS E
: Management | m)i Link o —
605 & 40 DRAM Ghips R L | g control
- Y A
80 DDR DRAM chips * ‘ local DRAM
+ buffer chip ~20W TDP & Snapdragon AP w/ 4 A57 ARM cores +
w/ a tall form factor ~10mmx10mm 2MB LLC, GPU, 2 MCs, etc. @

~5W & ~8x8mm? (1.8W & ~2x2mm?)

> > Architecture > > > > > >

MCN DIMM Architecture: Interface Logic

global
DDR
channel

12

core | | core [| core | | core
0 1 2 3

LLC / interconnect

control

Q
(&)
(O
Y
| -
Q
)
.E
e
)]
)]

X

RX

MCN Interface

Serving as a fake network

Interface card (NIC)

local DRAM

> Architecture >

>

13

MCN DIMM Architecture: Interface Logic

MCN bl;ffer layout core | | core | | core | | core
_ 4 Bytes —
4 8 12 63 global 0 1 2 3
DDR
 channel LLC / interconnect
<
Tx circular buffer > 48KB
\ control
Rx circular buffer - 48KB
Mapped to a range of physical memory space
directly accessed by MC like normal DRAM local DRAM

Q
(&)
(O
Y
| -
Q
)
§=
e
()

> Architecture > > > > > >

14

MCN DIMM Architecture: Interface Logic

MCN bl;ffer layout core | | core | | core | | core
_ 4 Bytes —
4 8 12 63 global 0 1 2 3
DDR
 channel LLC / interconnect
<
Tx circular buffer > 48KB
\ control
Rx circular buffer - 48KB
Mapped to a range of physical memory space
directly accessed by MC like normal DRAM local DRAM

Q
(&)
(O
Y
| -
Q
)
§=
e
()

> Architecture > > > > > >

MCN Driver

application I user space

TXlTRX
A

linux network stack
i . "MCNdriver 1 | kernel space

NIC e ——— :
Driver!i| forwarding engine || polling agent |
_______ e L,

memcpyl f N

$ memory channel 1

I MCN access I regular access hardware
. MCNSRAM | DDRmemory
Y

> > Driver > >

16

MCN PaCket Routing 1. A packet is passed from the host

network stack and the packet goes to

* Host 2 MCN the corresponding MCN DIMM or NIC
application 1 user space host
X l T RX "
linux network IP: X.X.X.X o
/11 O
' ""““—“““"1: kernel space =
' :)
Drivery [forwarding engine || pofing agent | &
memcpyl f ¥
—
$ memory channel 0)
I MCN access i regular access hardware =
. MONSRAM. Header | Data
Y

> > Driver > > > > >

17

MCN Packet Routing 2. If the packet needs to be sent to an
MCN DIMM, the forwarding engine

e Host > MCN checks the MAC of the packet stored in
main memory
application 1 user space host

X lT RX
A

linux network stack

>

Q

meVI f Y =
Header|Data/2

MC-0

kernel space

CPU

<
>
0
>
>
>
>
>
>
>
>
>
>
>
>
MC-1

l hardware

> > Driver > > > >

MCN Packet Routing

3. If the MAC matches w/ that of an MCN

DIMM, the packet is copied to the

* Host 2> MCN SRAM buffer of the MCN DIMM
application 1 user space host
TX l T RX
A E
linux network stack o =
—— § -[HeaderIData/Z
I ¥ i 1 o
e i: MCN driver : kernel space 8
iDriver:l forwarding engine || polling agent i 2
"""""" memepy [Ty =~ >
h o =
memory Channel MAC: AA.AA.AA.AAAAAA O HHeader|Data/2
I MCN access i regulaf access hardware = oD:
.~ Header | Data l -

> > Driver >

>

19

MCN PaCket Routing 4. This data copy triggers IRQ from the
MCN DIMM and MCN processor knows

* Host 2 MCN there is an arrived packet
application 1 user space host
X l T RX
A
=
linux network stack o =
O et O | Header | Data
i _ UMCNdriver 1 | kernel space = =
I NIC :I river : P =
: . l: . . . I ()
Driver!| forwarding engine | polling agent |: 2
| II I
______________________________________ U
memcpyl f v >
— =
memory channel 1 S a
S <
i MCN access I regular access hardware oDc
| Header | Data | DDR memory a
Y

> > Driver > > > > >

20

MCN Packet Routing 1. MCN DIMM writes a packet to its SRAM

buffer and set the corresponding TX-

* MCN = Host poll bit
application 1 user space host
X l T RX
A
=
linux network stack o =
O et O | Header | Data
i _ UMCNdriver 1 | kernel space = =
\Driver!i| forwarding engine || polling agent | D
I I
______________________________________ U
memcpyl f ¥ =
— =
memory channel 1 S a
S <
i MCN access I regular access hardware oDc
| Header | Data | DDR memory a
Y

> > Driver > > > >

21

MCN PaCket Routing 2. Polling agent from the host recognize
the TX-poll bit is set and read the

* MCN - Host packet from the SRAM buffer
application 1 user space host
X l T RX A

linux network stack o

kernel space =

C
DDR4 DIMM

Header | Data

Y = =

- =

emory channel 0 i =

S <

i MCN gt€ess I regular access hardware oDc

.| Header | Data | DDR memory a
. !

> > Driver > > > > >

22

MCN PaCket Routing 3. Forwarding engine checks the MAC

address and determine the destination

* MCN - Host
application 1 user space host
X l T RX
A
=
linux network stack o =
O et O
—————— i, <
i- NIC E:MCN driver i kernel space = oDc
T :: . l [)
Driverpj forwarding engineJl polling agent | Header | Data
Y = =
\ — =
MAC: HH.HH.HH.HH.HH.HH & . — g
dCCESS y |cauldl dttEss hardware E ODC
| Header | Data | DDR memory a
Y

> > Driver > > > > >

23

' 4. It this is for the host, it copies the
MCN Packet Routing f this is for the h h
packet to the host skb which in the host

e MCN > Host main memory *network socket buffer
application 1 user space host
X l T RX A
linux network stack o
_______________________________________ O
] I ii MCN driver kernel space =
Driverii Header | Data

|

|

|

|

|

I

I

|

|

|
3|
M |
31
ol
T I
< |
|
_’l
|

|

I

I

I

|

|

|

|

|

|

|

|

|

|

|

|

|
(

N
>

memory channel

MC-1

o
S
Q
o
=
IS
®
=
0
9,
®
o
o
=
G
Q)
0q
®
=
DDR4 % yD”VlM

i MCN access I regular access hardware

Header | Data = emory

> > Driver > > > >

24

' 4. It this is for the host, it copies the
MCN Packet Routing f this is for the h h
packet to the host skb which in the host

. %k
e MCN 9 Host main memory network socket buffer
application 1 user space host
X l T RX
A E
linux network stack o =
- § -[HeaderIData/Z
- UMCNdriver 1| kernel space 0
i NIC ii MCN driver i P 8
Driver!i| forwarding engine (| polling agent | 2
| II "
______________________________________ U
memcpyl f ¥ =
A v 2
$ memory channel) —[Headerl Data/2
I MCN access i regular access hardware = oDc
Y

> > Driver > > > >

25

MCN PaCket Routing 5. Finally the packet is passed to the host
network stack (e.g., TCP/IP)

* MCN = Host
application 1 user space host
X l T RX A
linux network stack o
_____________________________________ O -[HeaderIData/Z
] I MCN driver I | kernel space =
NIC | |
Driver!i| forwarding engke || polling agent i 2
! ,
——————————————————————————————————— U
memcpyl f ¥
—
A ,
$ ry channel S —[Heade
I MCN access i egular access hardware =
. MCNSRAM. Header | Data
Y

> > Driver > > > >

Optimizations

* Adopt optimizations from conventional Ethernet interfaces
v'Offload (or remove) packet fragmentation (e.g. TCP Segmentation Offload (TSO))

w/o TSO

TCP Data

(Pkt J(Pkt)
[Pkt][Pkt)

Ethernet
(NIC)

%l Data || Data

Pkt
Wire X

=~
[

FIEE ™

4

> > > Optimizations > > >

Optimizations

* Adopt optimizations from conventional Ethernet interfaces
v'Offload (or remove) packet fragmentation (e.g. TCP Segmentation Offload (TSO))

w/o TSO
TCP Data [Data]
\ 4
[Data || Data [Dat]
(oa)(he) L~ e
Ethernet [Pkt)[Pkt) (Pkt][Pkt)
(NIC) [Pkt][Pkt]} Pkt J__Pkt }
\ 4
Wi) Pkt) (_Pkt)
e (_Pkt) (_Pkt)
Pkt

4

> > > Optimizations > > >

Optimizations

* Adopt optimizations from conventional Ethernet interfaces
v'Offload (or remove) packet fragmentation (e.g. TCP Segmentation Offload (TSO))

W/o TSO MCN TSO
TCP Data [Data] Data]
\/ \/
[Data || Data_| [
mrenlmre B LR S O Data_]
Ethernet (Pkt J(Pkt) (Pkt)(Pkt)
(NIC) (Pkt][Pkt) Pkt J(CPkt Reducing the overhead of
* sending many small packets
[Pkt]
Wi) Pkt) C_Pkt)
e Pkt) Pkt)
. Pkt Pkt]

> > > Optimizations > > > >

Optimizations

* MCN-side DMA
v'Baseline MCN processor manually copies data b/w SRAM and DRAM

v'SRAM-to-DRAM DMA eliminates CPU memcpy overhead similar to NIC-to-DRAM
DMA in conventional systems

(cru) (cPu)

SRAM DRAM SRAM DRAM
MCN Baseline MCN w/ DMA

> > > Optimizations > > >

Proof of Concept HW/SW Demonstration

ConTutto top view Contutto plugged in IBM POWERS server

30

> > > > Proof of Concept >

>

Proof of Concept HW/SW Demonstration

qul)l 'Eg power8@tuleta2-contutto:~ hiruh -;ﬁca btl _base warn_component i
case unused 0 -np 2 -host power8@nios,tuleta /home/power8/mpihello
00
ello world from processor tuleta2-contutto, rank 0 out of 2 pr

a ello world from processor nios2, rank 1 out of 2 processors POWERS
host power8@tuleta2-contutto:~$ mpirun --mca btl base warn_component

- unused 0 -np 2 -host power8@nios,tuleta /home/power8/mpisendte U{ost)
st 300
achine tuleta2-contutto generated random number: 1804289383
achine tuleta2-contutto sent 1804289383
processor nios2 got 1804289383
power8@tuleta2-contutto:~$ Jj

MC-0
DDR4 DIMM
DDR4 DIMM

CPU

HIVS@rran-aeivel. ~ DJ2Xo0

‘1ength 0
PO:07:21.005542 IP nios.ssh > y700.42860: Flags [.], ack 3239,

MC-1
DDR4 DIMM

in 1246, options [nop,nop,TS val 141004 ecr 216486], length ©

P0:07:21.288293 IP nios.ssh > y700.42860: Flags [FP.], seq 3173 >>
, ack 3239, win 1246, options [nop,nop,TS val 141288 ecr 216486

| Mength 6 (MCN DIMM)
p0:07:21.305009 IP y700.42860 > nios.ssh: Flags [.], ack 3174,
in 308, options [nop,nop,TS val 216607 ecr 141288], length ©

ConTutto

MPI application running through MICN

> > > > Proof of Concept > > >

32

Evaluation Methodology

 Simulation = dist-gem5 (ISPASS’17)
* Network performance evaluation = iperf and ping
* Application performance evaluation = Coral, Bigdatabench and NPB

MCN System Configuration Host System Configuration

CPU ARMv8 Quad Core running @ 2.45GHz CPU ARMvV8 Octa Core running @ 3.4GHz
Caches L1I:32KB, L1D: 32KB, L2: 1MB Caches L1I: 32KB, L1D: 32KB, L2: 256KB, L3: 8MB
Memory DDR4-3200 Memory DDR4-3200
ON) Ubuntu 14.04 NIC 10GbE/1us link latency

OS Ubuntu 14.04

> > > > > Evaluation > >

Evaluation — Network Bandwidth (iPerf)

Normalized Bandwidth

mcn-mcn

mcn baseline _ 1.08x

host-mcn

mcn baseline 1.30x
10GbE

0 1 2 3 4

33

> > > > > Evaluation

>

34

Evaluation — Network Bandwidth (iPerf)

Normalized Bandwidth

mch dma

TSO

mcn-mcn

mch baseline

mcn dma

TSO

host-mcn

mch baseline

10GbE

Overview Architecture Driver Optimizations Proof of Concept Conclusion

35

Evaluation — Network Bandwidth (iPerf)

Normalized Bandwidth

mch dma

TSO

mcn-mcn

mch baseline

mcn dma

TSO

host-mcn

mch baseline

10GbE

Overview Architecture Driver Optimizations Proof of Concept Conclusion

36

Evaluation — Network Bandwidth (iPerf)

Normalized Bandwidth

mch dma

TSO

mcn-mcn

mch baseline

4.56x

mcn dma

TSO

host-mcn

mch baseline

10GbE

Overview Architecture Driver Optimizations Proof of Concept Conclusion

37

Evaluation — Network Latency (Ping)

Host << MCN MCN < MCN

O010GbE Omcn baseline OTSO ®Emcn dma O010GbE 0Omcn baseline OTSO ®EBmcn dma

2.0 - 2.0 -
>
%1'5 - 1.5 -
©
|
21.0 1.0
N
E
g0.5 19 Lo _I 0.5 - _I —I

oo L LTI [T | i 0.0

16 128 512 4K 8K 16 128 512 4K 8K
Packet Size (Bytes) Packet Size (Bytes)

> > > > > Evaluation > >

38

Evaluation — Aggregate Processing Bandwidth

02 04 06 =8 MCN DIMMs

= 97
0
> 8-
o 4
qu 7
= 61
@ X
e S A Oﬁg
g 4- ER
g 3 30
= 2 :
5 1 ik
0
o 2N O T Ny & & Oé' R Q@)
N Q O \2) N) O) N >
° N S & N N

S
> > > > > Evaluation > >

39

Scale-up versus MCN: Application Performance

The same number of cores between scale-up server and a server w/ MCN-enabled near-memory processing modules.

mmscale-up B MCN

012 -

S
= 1.0 A

O
oo
1

o o
A O

ized Execution

Normal
o O
o N

1121312131231 |2]|3|1|2|3(1]|2|3(1|2|3|1]|2]|3(1]|2]|3
IS ep cg mg ft bt sp lu avg

#MCN DIMMs per Channel (Number of Cores X 8 for scale-up setup)

> > > > > Evaluation > >

40

Conclusion

* MCN is an innovative near-memory processing concept
v'No change in host hardware, OS and user applications
v'Seamless integration w/ traditional distributed computing and better scalability

v'Feasibility proven w/ a commercial hardware system Data
\Y/[&\

" ork

* MCN can provide: Data

v'4.6x higher network bandwidth Server

S| Mem Channel
v'5.3x lower network latency
v'3.9x higher processing bandwidth Data
v'45% higher performance MCN

Ak

Mem Channel

than a conventional system

> > > > > > Conclusion >

Application-Transparent Near-Memory
Processing Architecture with Memory
Channel Network

Mohammad Alian!, Seung Won Min!, Hadi Asgharimoghaddam?,
Ashutosh Dhar!, Dong Kai Wang!, Thomas Roewer?, Adam McPadden?,
Oliver O'Halloran?, Deming Chen!, Jinjun Xiong?, Daehoon Kim!,
Wen-mei Hwu!, and Nam Sung Kim!3

'University of lllinois Urbana-Champaign
’IBM Research and Systems
SSamsung Electronics

X ILLINOIS

. i] center for)
Electrical & Computer Engineering Syotoms researoh
COLLEGE OF ENGINEERING =% | L ILLINOIS

42

Any Questions?

Overview Architecture Driver Proof of Concept Evaluation Conclusion

