dist-gem5: Distributed Simulation of Compute Clusters

Mohammad Alian, Umur Darbaz, Gabor Dozsa, Stephan Diestelhorst, Daehoon Kim, Nam Sung Kim University of Illinois Urbana-Champaign ARM Ltd., Cambridge, UK

Outline

motivation

✓ accelerating large-scale simulation

dist-gem5 architecture

- ✓ packet forwarding
- \checkmark synchronization
- ✓ checkpointing
- ✓ network model

evaluation

✓ validation, speedup, synchronization overhead

Outline

motivation

- ✓ accelerating large-scale simulation
- dist-gem5 architecture
 - ✓ packet forwarding
 - ✓ synchronization
 - ✓ checkpointing
 - ✓ network model

evaluation

- ✓ validation, speedup, synchronization overhead
- conclusion

What is gem5 – overview

- full-system, cycle-level, event-driven simulator
- used/maintained at universities and industry

Why dist-gem5?

• performance and power dissipation of a distributed system

complex interplay among system components at scale

dist-gem5 architecture

- need a full-system, cycle-level simulator which is fast enough to simulate a large-scale computer system
- distributed simulation:

what is gem5

✓ simulate a distributed system
 w/ many simulation hosts

evaluation

dist-gem5 architecture – high level view

- gem5 processes modeling full systems run in parallel on a cluster of physical machines
- simulated network switch
 - ✓ forward packets among the simulated systems
 - \checkmark synchronize the distributed simulation
 - ✓ simulate network topology

dist-gem5 architecture

Outline

motivation

✓ accelerating large-scale simulation

dist-gem5 architecture

- ✓ packet forwarding
- ✓ synchronization
- \checkmark checkpointing
- ✓ network model
- evaluation

✓ validation, speedup, synchronization overhead

dist-gem5 architecture – core components

dist-gem5 architecture

what is gem5

dist-gem5 architecture – core components

dist-gem5 architecture

what is gem5

evaluation

dist-gem5 architecture – packet forwarding

dist-gem5 architecture – packet forwarding

dist-gem5 architecture – packet forwarding

Asynchronous processing of incoming messages

- simulation thread (main thread)
 - ✓ process/insert events in the event queue
 - ✓ in case of send pkt event, encapsulate the simulated Ethernet packet in a message and send it out
- receiver thread
 - ✓ create for each gem5 process
 - \checkmark waits for incoming packets
 - ✓ creates a recv pkt event and insert it to the event queue

dist-gem5 architecture – core components

dist-gem5 architecture

what is gem5

evaluation

Need for synchronization

- receiver gem5 can run ahead of sender gem5
 - ✓ physical host mismatch
 - ✓ different events to be processed
- slowed down receiver gem5 to ensure simulation accuracy
- quantum-based synchronization

evaluation

Accurate packet forwarding

- quantum: interval for periodic synchronization in simulated time
- sync-event flushes inter gem5 communication channels
- if quantum ≤ simulated link delay:
 - ✓ expected delivery tick falls inside the next quantum
- optimal quantum size for accurate forwarding == simulated link delay

evaluation

dist-gem5 architecture – core components

dist-gem5 architecture

what is gem5

evaluation

dist-gem5 architecture – network modeling

Configurable network model

configurable baseline Ethernet switch model

✓ port number, delay, bandwidth, buffer size

Outline

motivation

✓ accelerating large-scale simulation

dist-gem5 architecture

✓ packet forwarding

- ✓ synchronization
- ✓ checkpointing

✓ network model

evaluation

✓ validation, speedup, synchronization overhead

Methodology – simulation techniques

• For example, simulating a cluster w/7 nodes and 1 network switch: parallel-gem5 dist-gem5 single-threaded-gem5

system#6 gem5#6	switch gem5#7	
system#4	system#5	
gem5#4	gem5#5	
quad core p	hysical host	
system#2	system#3	
gem5#6	gem5#7	
system#0	system#1	
gem5#4	gem5#5	
evaluation		

Methodology – experimental setup

- focus on off-chip network performance using network intensive applications

 iperf, memcached, httperf, tcptest, netperf, NAS parallel benchmark
- verification/validation against:
 - ✓ single-threaded-gem5
 - ✓ physical cluster
 - $\,\circ\,$ 4 node cluster w/ AMD A10-5800K
- speedup comparison against:
 - ✓ single-threaded-gem5
 - ✓ parallel-gem5

category	gem5 configuration
O3 core	4 cores; 4 way superscalar
memory	8GB DDR3 1600 MHz
network	Intel GbE NIC; 1 µs Link latency
OS	Linux Ubuntu 14.04 (Kernel 4.3)

Verification

- same node/network config
 - ✓ dist-gem5 generates identical simulation statistics compared to single-threaded-gem5

✓ different cluster sizes

Validation – network latency and bandwidth

- iperf (left) and memcahed (right)
- follows the behavior of physical setup
- 17.5% lower response time for memcached

Speedup – simulation time reduction

- running httperf on each simulated node sending fixed number of requests to a unique simulated node (apache server)
- compared with single-threaded-gem5
- dist-gem5 simulating 63 nodes on 16 physical hosts is
 - ✓ 83.1× faster than single-threaded-gem5
 - ✓ 12.8× faster than parallel-gem5

speedup of parallel-gem5 saturates!

Scalability – simulation time vs. simulated cluster size

- simulation time increase for simulating 64 vs. 3 nodes:
 - ✓ 57.3 × for Single-threaded-gem5
 - ✓ 23.9× for parallel-gem5
 - ✓ 1.9× for dist-gem5

what is gem5

dist-gem5 scales well!

Synchronization overhead

- sweep synchronization quantum size
- # of http req remains near constants
 ✓ maximum 2.6% variance
 - ✓ almost the same amount of work done at each quantum size
- simulation time improvement
 - ✓ 4.9% from 0.5 µs to 1 µs
 - ✓ 15.7% from 0.5 µs to 128 µs

dist-gem5 synchronization is efficient!

Conclusion

• dist-gem5 is a distributed version of gem5 for modeling computer clusters

- ✓ validated against a physical cluster
- ✓ accurate/deterministic
- ✓ rich off-chip network modeling
- ✓ 83.1x speedup over single-threaded-gem5 simulating a 63 node cluster

integrated to mainstream gem5

- ✓ available at gem5.org
- ✓ enabled via "--dist" command line option
- developed/maintained by university and industry

Thank You

